0

IN THIS ISSUE


Research Papers

J. Turbomach. 2019;141(4):041001-041001-13. doi:10.1115/1.4041307.
OPEN ACCESS

The loss of square, round, and elliptical turbine trailing edge geometries, and the mechanisms responsible, is assessed using a two-part experimental program. In the first part, a single blade experiment, in a channel with contoured walls, allowed rapid testing of a range of trailing edge sizes and shapes. In the second part, turbine blade cascades with a subset of sizes of the trailing edge geometries tested in part one were evaluated in a closed-loop variable density facility, at exit Mach numbers from 0.40 to 0.97, and exit Reynolds numbers from 1.5 × 105 to 2.5 × 106. Throughout the test campaign, detailed instantaneous Schlieren images of the trailing edge flows have been obtained to identify the underlying unsteady mechanisms in the base region. The experiments reveal the importance of suppressing transonic vortex shedding, and quantify the influence of this mechanism on loss. The state and thickness of the blade boundary layers immediately upstream of the trailing edge are of critical importance in determining the onset of transonic vortex shedding. Elliptical trailing edge geometries have also been found to be effective at suppressing transonic vortex shedding. For trailing edges that exhibit transonic vortex shedding, a mechanism is identified whereby reflected shed shockwaves encourage or discourage vortex shedding depending on the phase with which the shocks return to the trailing edge, capable of modifying the loss generated.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041002-041002-11. doi:10.1115/1.4041750.

The present study provides new effusion cooling data for both the surfaces of the full-coverage effusion cooling plate. For the effusion-cooled surface, presented are spatially resolved distributions of surface adiabatic film cooling effectiveness and surface heat transfer coefficients (measured using transient techniques and infrared thermography). For the impingement-cooled surface, presented are spatially resolved distributions of surface Nusselt numbers (measured using steady-state liquid crystal thermography). To produce this cool-side augmentation, impingement jet arrays at different jet Reynolds numbers, from 2720 to 11,100, are employed. Experimental data are given for a sparse effusion hole array, with spanwise and streamwise impingement hole spacing such that coolant jet hole centerlines are located midway between individual effusion hole entrances. Considered are the initial effusion blowing ratios from 3.3 to 7.5, with subsonic, incompressible flow. The velocity of the freestream flow which is adjacent to the effusion-cooled boundary layer is increasing with streamwise distance, due to a favorable streamwise pressure gradient. Such variations are provided by a main flow passage contraction ratio CR of 4. Of particular interest are effects of impingement jet Reynolds number, effusion blowing ratio, and streamwise development. Also, included are comparisons of impingement jet array cooling results with: (i) results associated with crossflow supply cooling with CR = 1 and CR = 4 and (ii) results associated with impingement supply cooling with CR = 1, when the mainstream pressure gradient is near zero. Overall, the present results show that, for the same main flow Reynolds number, approximate initial blowing ratio, and streamwise location, significantly increased thermal protection is generally provided when the effusion coolant is provided by an array of impingement cooling jets, compared to a crossflow coolant supply.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041003-041003-10. doi:10.1115/1.4041540.

Modern low pressure turbines (LPT) are designed in order to fulfil a various number of requirements such as high endurance, low noise, high efficiency, low weight, and low fuel consumption. Regarding the reduction of the emitted noise, different designs of LPT exit guide vanes (aerodynamically and/or acoustically optimized) of the turbine exit casing (TEC) were tested, and their noise reduction capabilities and aerodynamic performance were evaluated. In particular, measurements of TEC-losses were performed, and differences in the losses were reported. Measurements were carried out in a one and a half stage subsonic turbine test facility at the engine relevant operating point approach. This work focuses on the study of the unsteady flow field downstream of an unshrouded LPT rotor. The influence on the upstream flow field of a TEC design including acoustically optimized vanes (inverse cut-off TEC) is investigated and compared with a second TEC configuration without vanes (Vaneless TEC), by means of fast response aerodynamic pressure probe (FRAPP) measurements. The second configuration served as a reference concerning the influence of turbine exit guide vanes (TEGVs) onto the upstream located LPT rotor. The interactions between the stator and rotor wakes, secondary flows, and the TEGVs potential effect are identified via modal decomposition according to the theory of Tyler and Sofrin. The main structures constituting the unsteady flow field are detected, and the role of the major interaction effects in the loss generation mechanism and in the acoustic emission is analyzed. This study based on the modal analysis of the unsteady flow field offers new insight into the main interaction mechanisms and their importance in the assessment of the aerodynamic and aeroelastic performance of modern LPT exit casings.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041004-041004-12. doi:10.1115/1.4041599.

Vane pressure side heat transfer is studied numerically using large eddy simulation (LES) on an aft-loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu ≈ 0.7%), moderate (Tu ≈ 7.9%), and high (Tu ≈ 12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016, “Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels,” ASME Paper No. IMECE2016-67029). Heat transfer predictions on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu ≈ 12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case. Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max rms of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041005-041005-14. doi:10.1115/1.4041603.

Shaped film cooling holes are a well-established cooling technique used in gas turbines to keep component metal temperatures in an acceptable range. One of the goals of film cooling is to reduce the driving temperature for convection at the wall, the success of which is generally represented by the film cooling adiabatic effectiveness. However, the introduction of a film cooling jet-in-crossflow, especially if it is oriented at a compound angle, can augment the convective heat transfer coefficient and dominate the flowfield. This work aims to understand the effect that a compound angle has on the flowfield and adiabatic effectiveness of a shaped film cooling hole. Five orientations of the public 7–7–7 shaped film cooling hole were tested, from a streamwise-oriented hole (0 deg compound angle) to a 60 deg compound angle hole, in increments of 15 deg. Additionally, two pitchwise spacings of P/D = 3 and 6 were tested to examine the effect of hole-to-hole interaction. All cases were tested at a density ratio of 1.2 and blowing ratios ranging from 1.0 to 4.0. The experimental results show that increasing compound angle leads to increased lateral spread of coolant and enables higher laterally averaged effectiveness at high-blowing ratios. A smaller pitchwise spacing leads to more complete coverage of the endwall and has higher laterally averaged effectiveness even when normalized by coverage ratio, suggesting that hole to hole interaction is important for compound angled holes. Steady Reynolds-averaged Navier–Stokes computational fluid dynamics (CFD) was not able to capture the exact effectiveness levels, but did predict many of the observed trends. The lateral motion of the coolant jet was also quantified, both from the experimental data and the CFD prediction, and as expected, holes with a higher compound angle and higher blowing ratio have greater lateral motion, which generally also promotes hole-to-hole interaction.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041006-041006-10. doi:10.1115/1.4041655.

Internal coolant passages of gas turbine vanes and blades have various orientations relative to the external hot gas flow. As a consequence, the inflow of film cooling holes varies as well. To further identify the influencing parameters of film cooling under varying inflow conditions, the present paper provides detailed experimental data. The generic study is performed in a novel test rig, which enables compliance with all relevant similarity parameters including density ratio. Film cooling effectiveness as well as heat transfer of a 10–10–10 deg laidback fan-shaped cooling hole is discussed. Data are processed and presented over 50 hole diameters downstream of the cooling hole exit. First, the parallel coolant flow setup is discussed. Subsequently, it is compared to a perpendicular coolant flow setup at a moderate coolant channel Reynolds number. For the perpendicular coolant flow, asymmetric flow separation in the diffuser occurs and leads to a reduction of film cooling effectiveness. For a higher coolant channel Reynolds number and perpendicular coolant flow, asymmetry increases and cooling effectiveness is further decreased. An increase in blowing ratio does not lead to a significant increase in cooling effectiveness. For all cases investigated, heat transfer augmentation due to film cooling is observed. Heat transfer is highest in the near-hole region and decreases further downstream. Results prove that coolant flow orientation has a severe impact on both parameters.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041007-041007-15. doi:10.1115/1.4041645.

Gas turbine components are protected through a combination of internal cooling and external film cooling. Efforts aimed at improving cooling are often focused on either the internal cooling or the film cooling; however, the common coolant flow means the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. Measurements of overall cooling effectiveness, ϕ, using matched Biot number models allow evaluation of fully cooled components; however, the relative contributions of internal cooling, external cooling, and convection within the film cooling holes are not well understood. Matched Biot number experiments, complemented by computational fluid dynamics (CFD) simulations, were performed on a fully film cooled cylindrical leading edge model to quantify the effects of alterations in the cooling design. The relative influence of film cooling and cooling within the holes was evaluated by selectively disabling individual holes and quantifying how ϕ changed. Testing of several impingement cooling schemes revealed that impingement has a negligible influence on ϕ in the showerhead region. This indicates that the pressure drop penalties with impingement may not always be compensated by an increase in ϕ. Instead, internal cooling from convection within the holes and film cooling were shown to be the dominant contributors to ϕ. Indeed, the numerous holes within the showerhead region impede the ability of internal surface cooling schemes to influence the outside surface temperature. These results may allow improved focus of efforts on the forms of cooling with the greatest potential to improve performance.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041008-041008-10. doi:10.1115/1.4041751.

The continuous drive for ever higher turbine entry temperatures is leading to considerable interest in high performance cooling systems which offer high cooling effectiveness with low coolant utilization. The double-wall system is an optimized amalgamation of more conventional cooling methods including impingement cooling, pedestals, and film cooling holes in closely packed arrays characteristic of effusion cooling. The system comprises two walls, one with impingement holes, and the other with film holes. These are mechanically connected via pedestals allowing conduction between the walls while increasing coolant-wetted area and turbulent flow. However, in the open literature, experimental data on such systems are sparse. This study presents a new experimental heat transfer facility designed for investigating double-wall systems. Key features of the facility are discussed, including the use of infrared thermography to obtain overall cooling effectiveness measurements. The facility is designed to achieve Reynolds and Biot (to within 10%) number similarity to those seen at engine conditions. The facility is used to obtain overall cooling effectiveness measurements for a circular pedestal, double-wall test piece at three coolant mass-flows. A conjugate computational fluid dynamics (CFD) model of the facility was developed providing insight into the internal flow features. Additionally, a computationally efficient, decoupled conjugate method developed by the authors for analyzing double-wall systems is run at the experimental conditions. The results of the simulations are encouraging, particularly given how computationally efficient the method is, with area-weighted, averaged overall effectiveness within a small margin of those obtained from the experimental facility.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041009-041009-10. doi:10.1115/1.4042249.

This paper describes in detailed flow field in a centrifugal compressor with a vaned diffuser at off design point. Especially, we conducted both the experimental and numerical analysis in order to investigate the evolution process of a diffuser stall. At the stall point, the diffuser stall was initiated and rotated near the shroud side in the vaneless space. Furthermore, the diffuser stall was developed to a stage stall cell, as the mass flow was decreased. The developed stall cell was rotated within both the impeller and diffuser passages. The evolution process of the diffuser stall had three stall forms. First, the diffuser stall was rotating near the shroud side. Then, the diffuser stall shifted to the hub side and moved into the impeller passages. Finally, a stage stall was generated. From computational fluid dynamics (CFD) analysis, a tornado-type vortex was generated first, near the hub side of the diffuser leading edge, when the diffuser stall was shifted to the hub side. Next, a throat area blockage was formed near the hub side because of the boundary layer separation in the vaneless space. Finally, the blockage within the diffuser passages expanded to the impeller passages and developed into a stage stall. From the pressure measurements along the impeller and diffuser passages, the magnitude of pressure fluctuation on the casing wall of the diffuser throat area also suddenly increased when the diffuser stall shifted to the hub side. Therefore, the evolution area of the diffuser stall was caused by the evolution of the blockage near the throat area of the diffuser passage.

Commentary by Dr. Valentin Fuster
J. Turbomach. 2019;141(4):041010-041010-11. doi:10.1115/1.4041753.

Nonlinear turbulence closures were developed that improve the prediction accuracy of wake mixing in low-pressure turbine (LPT) flows. First, Reynolds-averaged Navier–Stokes (RANS) calculations using five linear turbulence closures were performed for the T106A LPT profile at isentropic exit Reynolds numbers 60,000 and 100,000. None of these RANS models were able to accurately reproduce wake loss profiles, a crucial parameter in LPT design, from direct numerical simulation (DNS) reference data. However, the recently proposed kv2¯ω transition model was found to produce the best agreement with DNS data in terms of blade loading and boundary layer behavior and thus was selected as baseline model for turbulence closure development. Analysis of the DNS data revealed that the linear stress–strain coupling constitutes one of the main model form errors. Hence, a gene-expression programming (GEP) based machine-learning technique was applied to the high-fidelity DNS data to train nonlinear explicit algebraic Reynolds stress models (EARSM), using different training regions. The trained models were first assessed in an a priori sense (without running any RANS calculations) and showed much improved alignment of the trained models in the region of training. Additional RANS calculations were then performed using the trained models. Importantly, to assess their robustness, the trained models were tested both on the cases they were trained for and on testing, i.e., previously not seen, cases with different flow features. The developed models improved prediction of the Reynolds stress, turbulent kinetic energy (TKE) production, wake-loss profiles, and wake maturity, across all cases.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In