0
Research Papers

Condensation in Radial Turbines—Part I: Mathematical Modeling

[+] Author and Article Information
Sebastian Schuster

Chair of Turbomachinery,
University of Duisburg-Essen,
Lotharstr. 1,
Duisburg, 47057, Germany
e-mail: s.schuster@uni-due.de

Dieter Brillert

Chair of Turbomachinery,
University of Duisburg-Essen,
Lotharstr. 1,
Duisburg, 47057, Germany
e-mail: dieter.brillert@uni-due.de

Friedrich-Karl Benra

Chair of Turbomachinery,
University of Duisburg-Essen,
Lotharstr. 1,
Duisburg, 47057, Germany
e-mail: friedrich.benra@uni-due.de

1Corresponding author.

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received February 23, 2017; final manuscript received July 17, 2018; published online September 28, 2018. Assoc. Editor: Anestis I. Kalfas.

J. Turbomach 140(10), 101001 (Sep 28, 2018) (9 pages) Paper No: TURBO-17-1032; doi: 10.1115/1.4040934 History: Received February 23, 2017; Revised July 17, 2018

In this two-part paper, the investigation of condensation in the impeller of radial turbines is discussed. In Paper I, a solution strategy for the investigation of condensation in radial turbines using computational fluid dynamics (CFD) methods is presented. In Paper II, the investigation methodology is applied to a radial turbine type series that is used for waste heat recovery. First, the basic CFD approach for the calculation of the gas-droplet-liquid-film flow is introduced. Thereafter, the equations connecting the subparts are explained and a validation of the models is performed. Finally, in Paper I, condensation phenomena for a selected radial turbine impeller are discussed on a qualitative basis. Paper II continues with a detailed quantitative analyses. The aim of Paper I is to explain the models that are necessary to study condensation in radial turbines and to validate the implementation against available experiments conducted on isolated effects. This study aims to develop a procedure that is applicable for investigation of condensation in radial turbines. Furthermore, the main processes occurring in a radial turbine once the steam temperature is below the saturation temperature are explained and analyzed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Schuster, S. , 2016, Untersuchung Der Entstehung Und Bewegung Von Flüssigkeitsansammlungen Auf Radialturbinenlaufradschaufeln Mit Einem Erweiterten Navier-Stokes-Löser, Shaker Verlag, Aachen, Germany.
Schuster, S. , Brillert, D. , and Benra, F.-K. , 2017, “ Condensation in Radial Turbines—Part II: Application of the Mathematical Model to a Radial Turbine Series,” ASME J. Turbomach., accepted.
Baumann, K. , 1912, “ Recent Developments in Steam Turbine Practice,” J. Inst. Electr. Eng., 48(213), pp. 768–842.
Gyarmathy, G. , 1962, “ Grundlagen einer Theorie der Nassdampfturbine,” Diss. Techn.Wiss. ETH Zürich, Nr. 3221. Ref.: Traupel, W.; Korref.: Ackeret, J–Zürich, 3221, Zürich, Switzerland.
Bakhtar, F. , Young, J. B. , White, A. J. , and Simpson, D. A. , 2005, “ Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 219(12), pp. 1315–1333. [CrossRef]
Moore, M. J. , Walters, P. T. , Crane, R. I. , and Davidson, B. J. , 1973, “ Predicting the Fog-Drop Size in Wet-Steam Turbines,” Instn. Mech. Engrs., Conference Publication 3, Paper No. C37/73.
Gyarmathy, G. , 2005, “ Nucleation of Steam in High-Pressure Nozzle Experiments,” Sixth Conference on Turbomachinery: Fluid Dynamics and Thermodynamics, Lille, France, Mar. 7–11, pp. 1–12.
Dorey, J. M. , Stanciu, M. , Ren, K. F. , Marechal, J. P. , Morel, P. , David, L. , and Fendler, Y. , 2011, “ Steam Condensation Experiments in Three Homothetic Nozzles,” Ninth European Conference on Turbomachinery, Vol. 2, pp. 1003–1015.
Bakhtar, F. , Webb, R. A. , Shojaee-Fard, M. H. , and Siraj, M. A. , 1993, “ An Investigation of Nucleating Flows of Steam in a Cascade of Turbine Blading,” ASME J. Fluids Eng., 115(1), pp. 128–134. [CrossRef]
Bakhtar, F. , Mamat, Z. A. , Jadayel, O. C. , and Mahpeykar, M. R. , 2009, “ On the Performance of a Cascade of Improved Turbine Nozzle Blades in Nucleating Steam—Part 1: Surface Pressure Distributions,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 223(8), pp. 1903–1914. [CrossRef]
White, A. J. , Young, J. B. , and Walters, P. T. , 1996, “ Experimental Validation of Condensing Flow Theory for a Stationary Cascade of Steam Turbine Blades,” Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 354(1704), pp. 59–88. [CrossRef]
White, A. J. , 2003, “ A Comparison of Modelling Methods for Polydispersed Wet-Steam Flow,” Int. J. Numer. Methods Eng., 57(6), pp. 819–834. [CrossRef]
Yau, K. K. , and Young, J. B. , 1987, “ The Deposition of Fog Droplets on Steam Turbine Blades by Turbulent Diffusion,” ASME J. Turbomach., 109(3), pp. 429–435. [CrossRef]
Young, J. B. , and Yau, K. K. , 1988, “ The Inertial Deposition of Fog Droplets on Steam Turbine Blades,” ASME J. Turbomach., 110(2), pp. 155–162. [CrossRef]
Crane, R. I. , 2004, “ Droplet Deposition in Steam Turbines,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 218(8), pp. 859–870. [CrossRef]
Starzmann, J. , Casey, M. V. , and Mayer, J. F. , 2013, “ Water Droplet Flow Paths and Droplet Deposition in Low Pressure Steam Turbines,” High Perform. Comput. Sci., 12, pp. 351–365.
Starzmann, J. , Kaluza, P. , Casey, M. V. , and Sieverding, F. , 2013, “ On Kinematic Relaxation and Deposition of Water Droplets in the Last Stages of Low Pressure Steam Turbines,” ASME Paper No. GT2013-95179.
Young, J. B. , Yau, K. K. , and Walters, P. T. , 1988, “ Fog Droplet Deposition and Coarse Water Formation in Low-Pressure Steam Turbines: A Combined Experimental and Theoretical Analysis,” ASME J. Turbomach., 110(2), pp. 163–172. [CrossRef]
Williams, J. , and Young, J. B. , 2007, “ Movement of Deposited Water on Turbomachinery Rotor Blade Surfaces,” ASME J. Turbomach., 129(2), pp. 394–403. [CrossRef]
Stanton, D. W. , and Rutland, C. J. , 1998, “ Multi-Dimensional Modeling of Thin Liquid Films and Spray-Wall Interactions Resulting From Impinging Sprays,” Int. J. Heat Mass Transfer, 41(20), pp. 3037–3054. [CrossRef]
Sattelmayer, T. F. , 1985, Zum Einfluss der ausgebildeten, turbulenten Luft-Flüssigkeitsfilm-Strömung auf den Filmzerfall und die Tropfenbildung am Austritt von Spalten geringer Höhe, Diss.–Karlsruhe, Germany.
Arienti, M. , Wang, L. , Corn, M. , Li, X. , Soteriou, M. C. , Shedd, T. A. , and Herrmann, M. , 2011, “ Modeling Wall Film Formation and Breakup Using an Integrated Interface-Tracking/Discrete-Phase Approach,” ASME J. Eng. Gas Turbines Power, 133(3), pp. 1–7.
Gepperth, S. , Müller, A. , Koch, R. , and Bauer, H.-J. , 2012, “ Ligament and Droplet Characteristics in Prefilming Airblast Atomization,” 12th Triennial International Conference on Liquid Atomization and Spray Systems (ICLASS), Heidelberg, Germany, Sept. 2–6.
Hinze, J. O. , 1949, “ Critical Speeds and Sizes of Liquid Globules,” Appl. Sci. Res., 1(1), pp. 273–288. [CrossRef]
Pilch, M. , and Erdman, C. A. , 1987, “ Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop,” Int. J. Multiphase Flow, 13(6), pp. 741–757. [CrossRef]
Crowe, C. T. , Sharma, M. P. , and Stock, D. E. , 1977, “ Particle-Source-in Cell (Psi-Cell) Model for Gas-Droplet Flows,” ASME J. Fluids Eng., 99(2), pp. 325–332. [CrossRef]
Abraham, F. F. , 1974, Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation, Academic Press, New York.
Kantrowitz, A. , 1951, “ Nucleation in Very Rapid Vapor Expansions,” J. Chem. Phys., 19(9), pp. 1097–1100. [CrossRef]
Vehkamäki, H. , 2011, Classical Nucleation Theory in Multicomponent Systems, Springer, Berlin/London.
Gerber, A. G. , 2002, “ Two-Phase Eulerian/Lagrangian Model for Nucleating Steam Flow,” ASME J. Fluids Eng., 124(2), pp. 465–475. [CrossRef]
Schuster, S. , Benra, F. K. , Dohmen, H. J. , König, S. , and Martens, U. , 2014, “ Sensitivity Analysis of Condensation Model Constants on Calculated Liquid Film Motion in Radial Turbines,” ASME Paper No. GT2014-25652.
Gyarmathy, G. , 1976, “ Condensation in Flowing Steam,” Two-Phase Steam Flow in Turbines and Separators: Theory, Instrumentation, Engineering, M. J. Moore and C. H. Sieverding , eds., Hemisphere Publishing Corporation, Washington, DC.
Schuster, S. , Benra, F.-K. , Dohmen, H. J. , König, S. , and Martens, U. , 2012, “ Influence of Different Gas Models on the Numerical Results of High-Velocity Condensation,” The 15th International Conference on Fluid Flow Technologies, Budapest, Hungary, Sept. 4–7.
Starzmann, J. , Hughes, F. R. , Schuster, S. , White, A. J. , Halama, J. , Hric, V. , Kolovratník, M. , Lee, H. , Sova, L. , Št'astný, M. , Grübel, M. , Schatz, M. , Vogt, D. M. , Patel, Y. , Patel, G. , Turunen-Saaresti, T. , Gribin, V. , Tishchenko, V. , Gavrilov, I. , Kim, C. , Baek, J. , Wu, X. , Yang, J. , Dykas, S. , Wróblewski, W. , Yamamoto, S. , Feng, Z. , and Li, L. , 2018, “ Results of the International Wet Steam Modelling Project,” Proc. Inst. Mech. Eng., Part A, 232(5), pp. 550–570.
Schiller, L. , and Naumann, A. , 1933, “ Über die grundlegende Berechnung bei der Schwerkraftaufbereitung,” Z. Des Vereins Dtsch. Ing., 77(12), pp. 318–320.
Cunningham, E. , 1910, “ On the Velocity of Steady Fall of Spherical Particles Through Fluid Medium,” Proc. R. Soc. A: Math., Phys. Eng. Sci., 83(563), pp. 357–365. [CrossRef]
Gosman, A. D. , and Ioannides, E. , 1983, “ Aspects of Computer Simulation of Liquid-Fueled Combustors,” J. Energy, 7(6), pp. 482–490. [CrossRef]
Guha, A. , 2008, “ Transport and Deposition of Particles in Turbulent and Laminar Flow,” Annu. Rev. Fluid Mech., 40(1), pp. 311–341. [CrossRef]
ANSYS, 2009, “ ANSYS® Academic Research CFX, Release 12.1,” ANSYS, Inc., Canonsburg, PA.
Ounis, H. , Ahmadi, G. , and McLaughlin, J. B. , 1991, “ Dispersion and Deposition of Brownian Particles From Point Sources in a Simulated Turbulent Channel Flow,” J. Colloid Interface Sci., 147(1), pp. 233–250. [CrossRef]
Lantermann, U. , 2006, Simulation Der Transport- Und Depositionsvorgänge Von Nanopartikeln in Der Gasphase Mittels Partikel-Monte-Carlo- Und Lattice-Boltzmann-Methoden, University of Duisburg-Essen, Duisburg, Germany.
Sommerfeld, M. , 2006, “ Theoretical and Experimental Modelling of Particulate Flows,” Von Karman Institute for Fluid Dynamics (Lecture Series 2000–06), von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium, p. 20.
Talbot, L. , Cheng, R. K. , Schefer, R. W. , and Willis, D. R. , 1980, “ Thermophoresis of Particles in a Heated Boundary Layer,” J. Fluid Mech., 101(4), pp. 737–758. [CrossRef]
Ryley, D. J. , and Davies, J. B. , 1983, “ Effect of Thermophoresis on Fog Droplet Deposition on Low Pressure Steam Turbine Guide Blades,” Int. J. Heat Fluid Flow, 4(3), pp. 161–167. [CrossRef]
Liu, B. Y. , and Agarwal, J. K. , 1974, “ Experimental Observation of Aerosol Deposition in Turbulent Flow,” J. Aerosol Sci., 5(2), pp. 145–155. [CrossRef]
Sehmel, G. A. , 1968, Aerosol Deposition From Turbulent Airstreams in Vertical Conduits, Vol. 578, Washington Pacific Northwest Laboratory BNWL, Battelle-Northwest, Richland, WA.
Wu, Z. , and Young, J. B. , 2012, “ The Deposition of Small Particles From a Turbulent Air Flow in a Curved Duct,” Int. J. Multiphase Flow, 44, pp. 34–47. [CrossRef]
Schuster, S. , Benra, F.-K. , and Brillert, D. , 2017, “ Droplet Deposition in Radial Turbines,” Eur. J. Mech.-B/Fluids, 61(2), pp. 289–296. [CrossRef]
Schuster, S. , Benra, F.-K. , and Brillert, D. , 2017, “ Reliability of Condensation Models for Droplet Deposition Calculations in Radial Turbines,” Wet Steam Conference, pp. 1–12.
Lienhard, I. V. J. H. , and Lienhard, V. J. H. , 2012, A Heat Transfer Text Book. 4 ed., Cambridge Massachusetts Phlogiston Press, Cambridge, MA.
Ferziger, J. H. , and Perić, M. , 2008, Numerische Strömungsmechanik, Springer, Berlin.
Wittig, S. , Himmelsbach, J. , Noll, B. , Feld, H. J. , and Samenfink, W. , 1992, “ Motion and Evaporation of Shear-Driven Liquid Films in Turbulent Gases,” ASME J. Eng. Gas Turbines Power, 114(2), pp. 395–400. [CrossRef]
Eisfeld, T. , 2011, Experimentelle Untersuchung Der Aerodynamik Einer Mit Wassertropfen Beladenen Luftströmung in Einem Ebenen Verdichtergitter, Helmut-Schmidt-Univ. Bibliothek, Hamburg, Germany.
Schmehl, R. , 2004, Tropfendeformation Und Nachzerfall Bei Der Technischen Gemischaufbereitung, Logos-Verl, Berlin.
Wagner, W. , and Kretzschmar, H.-J. , 2008, International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.
Fakhari, K. , 2009, “ On the Effects of Unsteadiness on the Condensation Process in Low-Pressure Steam Turbines,” ASME Paper No. GT2009-60078.

Figures

Grahic Jump Location
Fig. 1

Calculation program

Grahic Jump Location
Fig. 2

Illustration of the gas-droplet flow calculation

Grahic Jump Location
Fig. 4

Deposition rate (Eq. (29)) in a straight tube as a function of the nondimensional relaxation time (Eq. (30))

Grahic Jump Location
Fig. 3

Comparison between CFD calculation (lines) with the values measured by Moore et al. (symbols)

Grahic Jump Location
Fig. 6

Subcooling in the impeller flow channel and droplet deposition at surface

Grahic Jump Location
Fig. 5

Validation of the film model with experimental data from Ref. [52]

Grahic Jump Location
Fig. 7

Wetting of the blade and mesh independency study: (a) wetting of the impeller pressure side, cited from Ref. [49] and (b) mesh independence study for the wetting of the blade

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In