0
RESEARCH PAPERS

Computation of Inviscid Incompressible Flow Using the Primitive Variable Formulation

[+] Author and Article Information
S. Abdallah, H. G. Smith

Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804

J. Turbomach 108(1), 68-75 (Jul 01, 1986) (8 pages) doi:10.1115/1.3262026 History: Received January 27, 1986; Online November 09, 2009

Abstract

The primitive variable formulation originally developed for the incompressible Navier–Stokes equations is applied for the solution of the incompressible Euler equations. The unsteady momentum equation is solved for the velocity field and the continuity equation is satisfied indirectly in a Poisson-type equation for the pressure (divergence of the momentum equation). Solutions for the pressure Poisson equation with derivative boundary conditions exist only if a compatibility condition is satisfied (Green’s theorem). This condition is not automatically satisfied on nonstaggered grids. A new method for the solution of the pressure equation with derivative boundary conditions on a nonstaggered grid [25] is used here for the calculation of the pressure. Three-dimensional solutions for the inviscid rotational flow in a 90 deg curved duct are obtained on a very fine mesh (17 × 17 × 29). The use of a fine grid mesh allows for the accurate prediction of the development of the secondary flow. The computed results are in good agreement with the experimental data of Joy [15].

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In