Splitter Blades as an Aeroelastic Detuning Mechanism for Unstalled Supersonic Flutter of Turbomachine Rotors

[+] Author and Article Information
D. A. Topp, S. Fleeter

Purdue University, West Lafayette, IN 47907

J. Turbomach 108(2), 244-252 (Oct 01, 1986) (9 pages) doi:10.1115/1.3262044 History: Received January 20, 1986; Online November 09, 2009


A mathematical model is developed to demonstrate the application of splitter blades as an aeroelastic detuning mechanism for unstalled supersonic flutter of turbomachine rotors. The splitters introduce both aerodynamic and structural detuning, thereby leading to enhanced aeroelastic stability. The aerodynamic detuning is due to the variable circumferentially spaced splitters between each pair of full chord airfoils, with aerodynamic detuning due to alternate circumferential spacing of the full chord airfoils also considered. The structural detuning arises from the lower natural frequencies of the splitters as compared to that of the full chord airfoils. The enhanced torsion mode flutter stability due to the incorporation of splitters into a rotor design is demonstrated by applying this model to two unstable baseline twelve-bladed rotors which are based on Verdon’s Cascade A and Cascade B configurations. In each case, the unstable baseline rotor is stabilized by the introduction of appropriate splitters. The critical parameters for this stability enhancement are the chord length and the circumferential and axial locations of the splitters.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In