Some Experiments With a Supersonic Axial Compressor Stage

[+] Author and Article Information
A. J. Wennerstrom

Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH

J. Turbomach 109(3), 388-397 (Jul 01, 1987) (10 pages) doi:10.1115/1.3262118 History: Received May 06, 1986; Online November 09, 2009


Between 1970 and 1974, ten variants of a supersonic axial compressor stage were designed and tested. These included two rotor configurations, three rotor tip clearances, addition of boundary-layer control consisting of vortex generators on both the outer casing and the rotor, and the introduction of slots in the stator vanes. Design performance objectives were a stage total pressure ratio of 3.0 with an isentropic efficiency of 0.82 at a tip speed of 1600 ft/s (488 m/s). The first configuration passed only 70 percent of design flow at design speed, achieving a stage pressure ratio of 2.25 at a peak stage isentropic efficiency of 0.61. The rotor was grossly separated. The tenth variant passed 91.4 percent of design flow at design speed, producing a stage pressure ratio of 3.03 with an isentropic efficiency of 0.75. The rotor achieved a pressure ratio of 3.59 at an efficiency of 0.87 under the same conditions. Major conclusions were that design tools available today would undoubtedly permit the original goals to be met or exceeded. However, the application for such a design is currently questionable because efficiency goals considered acceptable for most current programs have risen considerably from the level considered acceptable at the inception of this effort. Splitter vanes placed in the rotor permitted very high diffusion levels to be achieved without stalling. However, viscous effects causing three-dimensional flows violating the assumption of flow confined to concentric stream tubes were so strong that a geometry optimization does not appear practical without a three-dimensional, viscous analysis. Passive boundary-layer control in the form of vortex generators and slots does appear to offer some benefit under certain circumstances.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In