0
RESEARCH PAPERS

Experimental and Theoretical Study of the Swirling Flow in Centrifugal Compressor Volutes

[+] Author and Article Information
R. A. Van den Braembussche, B. M. Hände

von Karman Institute for Fluid Dynamics, B-1640 Rhode-Saint-Genèse, Belgium

J. Turbomach 112(1), 38-43 (Jan 01, 1990) (6 pages) doi:10.1115/1.2927418 History: Received January 27, 1989; Online June 09, 2008

Abstract

Measurements of the three-dimensional flow in a simplified model of a centrifugal compressor volute at design and off-design operation are presented. A nearly constant swirl velocity is observed near the walls and a forced vortex type of flow is observed in the center. This velocity distribution is almost identical at all cross sections and all operating points. An explanation is given on how this swirl distribution results from the specific way a volute is filled with fluid. The throughflow velocity component shows a large crosswise variation. A minimum or maximum velocity is observed at the volute center depending on the operating point. A simple analytic model, based on the radial equilibrium of forces, is described. Calculations for isentropic flows reveal the relation between the swirl distribution and the large increase of throughflow velocity toward the center. This explains why volutes should be designed with negative blockage. Nonisentropic calculations, using the experimental loss distribution, correctly reproduce the measured throughflow velocity and static pressure distribution.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In