Effects of an Embedded Vortex on Injectant From a Single Film-Cooling Hole in a Turbulent Boundary Layer

[+] Author and Article Information
P. M. Ligrani, W. Williams

Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA 93943-5000

J. Turbomach 112(3), 428-436 (Jul 01, 1990) (9 pages) doi:10.1115/1.2927677 History: Received January 27, 1989; Online June 09, 2008


Effects of embedded longitudinal vortices on heat transfer in turbulent boundary layers with injection from a single film-cooling hole are described. These results were obtained at a free-stream velocity of 10 m/s, with a film-cooling hole inclined 30 deg to the horizontal and a blowing ratio of about 0.50. The ratio of vortex core diameter to injection hole diameter was 1.58, and the ratio of circulation to injection velocity time hole diameter was about 3.16. Coolant distributions and spatially resolved heat transfer measurements indicate that injection hole centerlines must be at least 2.9–3.4 vortex core diameters away from the vortex center in the lateral direction to avoid significant alterations to wall heat transfer and distributions of film coolant. Under these circumstances, protection from film cooling is evident at least up to 55 hole diameters downstream of injection. When the injection hole is closer to the vortex center, secondary flows convect most injectant into the vortex upwash and thermal protection from film cooling is destroyed for streamwise locations from the injection hole greater than 17.5 hole diameters.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In