0
RESEARCH PAPERS

Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction

[+] Author and Article Information
R. S. Bunker, D. E. Metzger

Mechanical and Aerospace Engineering Department, Arizona State University, Tempe, AZ 85287

J. Turbomach 112(3), 451-458 (Jul 01, 1990) (8 pages) doi:10.1115/1.2927680 History: Received July 01, 1989; Online June 09, 2008

Abstract

An experimental study has been designed and performed to measure very localized internal heat transfer characteristics in large-scale models of turbine blade impingement-cooled leading edge regions. Cooling is provided by a single line of equally spaced multiple jets, aimed at the leading edge apex and exiting the leading edge region in the opposite or chordwise direction. Detailed two-dimensional local surface Nusselt number distributions have been obtained through the use of aerodynamically steady but thermally transient tests employing temperature-indicating coatings. The thin coatings are sprayed directly on the test surface and are observed during the transient with automated computer vision and data acquisition systems. A wide range of parameter combinations of interest in cooled airfoil practice are covered in the test matrix, including combinations of variations in jet Reynolds number, airfoil leading edge sharpness, jet pitch-to-diameter ratio, and jet nozzle-to-apex travel distance. Measured local Nusselt numbers at each chordwise location back from the stagnation line have been used to calculate both the spanwise average Nusselt number and spanwise Nusselt number gradient as functions of chordwise position. Results indicate general increases in heat transfer with approximately the 0.6 power of jet Reynolds number, increases in heat transfer with decreasing leading edge sharpness as well as with decreasing nozzle-to-apex distance, and increases in spanwise average heat transfer with decreasing jet pitch-to-diameter ratio. The latter increases are accompanied by increases in the spanwise gradient of the heat transfer coefficient. Comparison with available prior results of much coarser spatial resolution shows good agreement and establishes confidence in the use of the results for design purposes and as baseline results for comparison with subsequent experiments involving film cooling bleed.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In