Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement

[+] Author and Article Information
D. E. Metzger, R. S. Bunker, G. Bosch

Mechanical and Aerospace Engineering Department, Arizona State University, Tempe, AZ 85253

J. Turbomach 113(1), 52-59 (Jan 01, 1991) (8 pages) doi:10.1115/1.2927737 History: Received February 14, 1989; Online June 09, 2008


An experimental technique has been developed for measurement of local convection heat transfer characteristics on rotating surfaces, utilizing thin liquid crystal surface coatings in a thermal transient test procedure. The encapsulated liquid crystal coatings used are sprayed directly on the test surface and their response is observed and processed during the transient with automated computer vision and data acquisition systems. Heat transfer coefficients are calculated from the thermal transient response of the test surface, as determined from the color indication from the thin coating. A significant advantage of the method, especially for convection in disk/shroud cavities that may contain recirculating fluid regions, is that appropriate thermal boundary conditions are naturally imposed on all of the boundary surfaces. The method is also relatively fast and inexpensive, and allows the geometry of the disk and stator surfaces to be changed easily, without the expenses of mounting discrete heat flux and temperature sensors and equipment to transfer information to a stationary frame of reference. Application of the experimental technique is demonstrated with detailed radially local surface Nusselt number distributions acquired for cases involving jet impingement onto a smooth disk, rotating in close proximity to a parallel plane stator disk. A single circular jet, with nozzle exit flush mounted in the stator, is oriented normal to the disk surface at various radii and flow rates. Local Nusselt numbers are presented nondimensionally as functions of both disk and flow Reynolds numbers. The results indicate that the local radial heat transfer distribution can be controlled by varying the impingement radius, but maximum radially averaged heat transfer is obtained with impingement at the disk center.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In