An Experimental Investigation of Heat Transfer Coefficients in a Spanwise Rotating Channel With Two Opposite Rib-Roughened Walls

[+] Author and Article Information
M. E. Taslim, A. Rahman

Mechanical Engineering Department, Northeastern University, Boston, MA 02115

S. D. Spring

Aircraft Engine Business Group, General Electric Company, Lynn, MA 01910

J. Turbomach 113(1), 75-82 (Jan 01, 1991) (8 pages) doi:10.1115/1.2927740 History: Received January 25, 1989; Online June 09, 2008


Liquid crystals are used in this experimental investigation to measure the heat transfer coefficient in a spanwise rotating channel with two opposite rib-roughened walls. The ribs (also called turbulence promoters or turbulators) are configured in a staggered arrangement with an angle of attack to the mainstream flow, α, of 90 deg for all cases. Results are presented for the three values of turbulator blockage ratio e/Dh (0.1333, 0.25, 0.333) and for a range of Reynolds numbers from 15,000 to 50,000 while the test section is rotated at different speeds to give rotational Reynolds numbers between 450 and 1800. The Rossby number range is 10 to 100 (rotation number of 0.1 to 0.01). The effect of turbulator blockage ratios on heat transfer enhancement is also investigated. Comparisons are made between the results of geometrically identical stationary and rotating passage of otherwise similar operating conditions. The results indicate that a significant enhancement in heat transfer is achieved in both the stationary and rotating cases, when the surfaces are roughened with turbulators. For the rotating case, a maximum increase over that of the stationary case of about 45 percent in the heat transfer coefficient is seen for a blockage ratio of 0.133 on the trailing surface in the direction of rotation and the minimum is a decrease of about 6 percent for a blockage ratio of 0.333 on the leading surface, for the range of rotation numbers tested. The technique of using liquid crystals to determine heat transfer coefficients in this investigation proved to be an effective and accurate method especially for nonstationary test sections.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In