Similarity Analysis of Compressor Tip Clearance Flow Structure

[+] Author and Article Information
G. T. Chen, E. M. Greitzer, C. S. Tan

Gas Turbine Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

F. E. Marble

Jet Propulsion Center, California Institute of Technology, Pasadena, CA 91125

J. Turbomach 113(2), 260-269 (Apr 01, 1991) (10 pages) doi:10.1115/1.2929098 History: Received February 09, 1990; Online June 09, 2008


A new approach is presented for analyzing compressor tip clearance flow. The basic idea is that the clearance velocity field can be (approximately) decomposed into independent throughflow and crossflow, since chordwise pressure gradients are much smaller than normal pressure gradients in the clearance region. As in the slender body approximation in external aerodynamics, this description implies that the three-dimensional, steady, clearance flow can be viewed as a two-dimensional, unsteady flow. Using this approach, a similarity scaling for the crossflow in the clearance region is developed and a generalized description of the clearance vortex is derived. Calculations based on the similarity scaling agree well with a wide range of experimental data in regard to flow features such as crossflow velocity field, static pressure field, and tip clearance vortex trajectory. The scaling rules also provide a useful way of exploring the parametric dependence of the vortex trajectory and strength for a given blade row. The emphasis of the approach is on the vortical structure associated with the tip clearance because this appears to be a dominant feature of the endwall flow; it is also shown that this emphasis gives considerable physical insight into overall features seen in the data.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In