0
RESEARCH PAPERS

Heat Transfer in Rotating Serpentine Passages With Smooth Walls

[+] Author and Article Information
J. H. Wagner, B. V. Johnson

United Technologies Research Center, East Hartford, CT 06108

F. C. Kopper

Pratt and Whitney, Commercial Engine Business, East Hartford, CT 06108

J. Turbomach 113(3), 321-330 (Jul 01, 1991) (10 pages) doi:10.1115/1.2927879 History: Received January 17, 1990; Online June 09, 2008

Abstract

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, smooth-wall heat transfer model with both radially inward and outward flow. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. These four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. It was found that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs and that the effect of rotation on the heat transfer coefficients was markedly different depending on the flow direction. Local heat transfer coefficients were found to decrease by as much as 60 percent and increase by 250 percent from no-rotation levels. Comparisons with a pioneering stationary vertical tube buoyancy experiment showed reasonably good agreement. Correlation of the data is achieved employing dimensionless parameters derived from the governing flow equations.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In