Heat Transfer Measurements and Calculations in Transitionally Rough Flow

[+] Author and Article Information
M. H. Hosni, H. W. Coleman, R. P. Taylor

Thermal & Fluid Dynamics Laboratory, Mechanical and Nuclear Engineering Department, Mississippi State University, Mississippi State, MS 39762

J. Turbomach 113(3), 404-411 (Jul 01, 1991) (8 pages) doi:10.1115/1.2927889 History: Received January 10, 1990; Online June 09, 2008


Experimental data on a rough surface for both transitionally rough and fully rough turbulent flow regimes are presented for Stanton number distribution, skin friction coefficient distribution, and turbulence intensity profiles. The rough surface is composed of 1.27-mm-dia hemispheres spaced in a staggered array four base diameters apart on an otherwise smooth wall. Special emphasis is placed on the characteristics of heat transfer in the transitionally rough flows. Stanton number data are reported for zero pressure gradient incompressible turbulent boundary layer air flow for nominal free-stream velocities of 6, 12, 28, 43, 58, and 67 m/s, which give x-Reynolds numbers up to 10,000,000. These data are compared with previously published rough surface data, and the classification of a boundary layer flow into transitionally rough and fully rough regimes is explored. Moreover, a new heat transfer model for use in the previously published discrete element prediction approach is presented. Computations using the discrete element model are presented and compared with data obtained from two different rough surfaces. The discrete element predictions for both surfaces are found to be in substantial agreement with the data.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In