0
RESEARCH PAPERS

Turbine Tip and Shroud Heat Transfer

[+] Author and Article Information
D. E. Metzger

Arizona State University, Tempe, AZ 85287

M. G. Dunn

Calspan-UB Research Center, Buffalo, NY 14255

C. Hah

General Electric Company, Schenectady, NY 12301

J. Turbomach 113(3), 502-507 (Jul 01, 1991) (6 pages) doi:10.1115/1.2927902 History: Received January 17, 1990; Online June 09, 2008

Abstract

Unshrouded blades of axial turbine stages move in close proximity to the stationary outer seal, or shroud, of the turbine housing. The pressure difference between the concave and convex sides of the blade drives a leakage flow through the gap between the moving blade tip and adjacent wall. This clearance leakage flow and accompanying heat transfer are of interest because of long obvious effects on aerodynamic performance and structural durability, but understanding of its nature and influences has been elusive. Previous studies indicate that the leakage through the gap is mainly a pressure-driven flow whose magnitude is related strongly to the airfoil pressure loading distribution and only weakly, if at all, to the relative motion between blade tip and shroud. A simple flow and heat transfer model incorporating these features can be used to estimate both tip and shroud heat transfer provided that reasonable estimates of the clearance gap size and clearance leakage flow can be made. The present work uses a numerical computation of the leakage flow to link the model to a specific turbine geometry and operating point for which a unique set of measured local tip and shroud heat fluxes is available. The resulting comparisons between the model estimates and measured heat transfer are good. The model should thus prove useful in the understanding and interpretation of future measurements, and should additionally prove useful for providing early design estimates of the levels of tip and shroud heat transfer that need to be compensated for by active turbine cooling.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In