0
RESEARCH PAPERS

Inviscid and Viscous Solutions for Airfoil/Cascade Flows Using a Locally Implicit Algorithm on Adaptive Meshes

[+] Author and Article Information
C. J. Hwang, J. L. Liu

Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan

J. Turbomach 113(4), 553-560 (Oct 01, 1991) (8 pages) doi:10.1115/1.2929114 History: Received January 15, 1990; Online June 09, 2008

Abstract

A numerical solution procedure, which includes a locally implicit finite volume scheme and an adaptive mesh generation technique, has been developed to study airfoil and cascade flows. The Euler/Navier–Stokes, continuity, and energy equations, in conjunction with Baldwin-Lomax model for turbulent flow, are solved in the Cartesian coordinate system. To simulate physical phenomena efficiently and correctly, a mixed type of mesh, with unstructured triangular cells for the inviscid region and structured quadrilateral cells for the viscous, boundary layer, and wake regions, is introduced in this work. The inviscid flow passing through a channel with circular arc bump and the laminar flows over a flat plate with/without shock interaction are investigated to confirm the accuracy, convergence, and solution-adaptibility of the numerical approach. To prove the reliability and capability of the present solution procedure further, the inviscid/viscous results for flows over the NACA 0012 airfoil, NACA 65-(12)10 compressor, and one advanced transonic turbine cascade are compared to the numerical and experimental data given in related papers and reports.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In