Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence

[+] Author and Article Information
D. G. Gregory-Smith, J. G. E. Cleak

School of Engineering & Applied Science, University of Durham, Science Laboratories, Durham, DH1 3LE, United Kingdom

J. Turbomach 114(1), 173-183 (Jan 01, 1992) (11 pages) doi:10.1115/1.2927981 History: Received January 12, 1990; Online June 09, 2008


Measurements of the mean and turbulent flow field have been made in a cascade of high turning turbine rotor blades. The inlet turbulence was raised to 5 percent by a grid placed upstream of the cascade, and the secondary flow region was traversed within and downstream of the blades using a five-hole probe and crossed hot wires. Flow very close to the end wall was measured using a single wire placed at several orientations. Some frequency spectra of the turbulence were also obtained. The results show that the mean flow field is not affected greatly by the high inlet turbulence. The Reynolds stresses were found to be very high, particularly in the loss core. Assessment of the contributions to production of turbulence by the Reynolds stresses shows that the normal stresses have significant effects, as do the shear stresses. The calculation of eddy viscosity from two independent shear stresses shows it to be fairly isotropic in the loss core. Within the blade passage, the flow close to the end wall is highly skewed and exhibits generally high turbulence. The frequency spectra show no significant resonant peaks, except for one at very low frequency, attributable to an acoustic resonance.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In