The Development of Axial Turbine Leakage Loss for Two Profiled Tip Geometries Using Linear Cascade Data

[+] Author and Article Information
J. P. Bindon, G. Morphis

University of Natal, Durban, South Africa

J. Turbomach 114(1), 198-203 (Jan 01, 1992) (6 pages) doi:10.1115/1.2927985 History: Received February 07, 1990; Online June 09, 2008


To assess the possibility of tip clearance loss reduction and to explore the nature and origin of tip clearance loss, blade tip geometries that reduce the roughly 40 percent of total loss occurring within the gap were studied. The shapes investigated aimed at reducing or avoiding the gap separation bubble thought to contribute significantly to both internal gap loss and to the endwall mixing loss. It was found that radiusing and contouring the blade at gap inlet eliminated the separation bubble and reduced the internal gap loss but created a higher mixing loss to give almost unchanged overall loss coefficients when compared with the simple sharp-edged flat-tipped blade. The separation bubble does not therefore appear to influence the mixing loss. Using a method of assessing linear cascade experimental data as though it were a rotor with work transfer, one radiused geometry, contoured to shed radial flow into the gap and reduce the leakage mass flow, was found to have a significantly higher efficiency. This demonstrates the effectiveness of the data analysis method and that cascade loss coefficient alone or gap discharge coefficient cannot be used to evaluate tip clearance performance accurately. Contouring may ultimately lead to better rotor blade performances.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In