Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure

[+] Author and Article Information
P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe

Thermo-Fluid Mechanics Research Centre, University of Sussex, Falmer, Brighton, BN1 9RH, United Kingdom

J. Turbomach 114(1), 237-246 (Jan 01, 1992) (10 pages) doi:10.1115/1.2927991 History: Received January 13, 1990; Online June 09, 2008


A rotating cavity with an axial throughflow of cooling air is used to provide a simplified model for the flow that occurs between adjacent corotating compressor disks inside a gas turbine engine. Flow visualization and laser-Doppler anemometry are employed to study the flow structure inside isothermal and heated rotating cavities for a wide range of axial-gap ratios, G, rotational Reynolds number, Reφ, axial Reynolds numbers, Rez , and temperature distributions. For the isothermal case, the superposed axial flow of air generates a powerful toroidal vortex inside cavities with large gap ratios (G ≳ 0.400) and weak counterrotating toroidal vortices for cavities with small gap ratios. Depending on the gap ratio and the Rossby number, ε (where ε ∝ Rez /Reφ), axisymmetric and nonaxisymmetric vortex breakdown can occur, but circulation inside the cavity becomes weaker as e is reduced. For the case where one or both disks of the cavity are heated, the flow becomes nonaxisymmetric: Cold air enters the cavity in a “radial arm” on either side of which is a vortex. The cyclonic and anticyclonic circulations inside the two vortices are presumed to create the circumferential pressure gradient necessary for the air to enter the cavity (in the radial arm) and to leave (in Ekman layers on the disks). The core of fluid between the Ekman layers precesses with an angular speed close to that of the disks, and vortex breakdown appears to reduce the relative speed of precession.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In