Modeling of Unsteady Transitional Boundary Layers

[+] Author and Article Information
J. S. Addison, H. P. Hodson

Whittle Laboratory, Cambridge University, Cambridge CB3 ODY, United Kingdom

J. Turbomach 114(3), 580-589 (Jul 01, 1992) (10 pages) doi:10.1115/1.2929182 History: Received March 04, 1991; Online June 09, 2008


In turbomachinery, a considerable proportion of the blade surface area can be covered by transitional boundary layers. This means that accurate prediction of the profile loss and boundary layer behavior in general depends on the accurate modeling of the transitional boundary layers, especially at low Reynolds numbers. This paper presents a model for determining the intermittency resulting from the unsteady transition caused by the passage of wakes over a blade surface. The model is founded on work by Emmons (1951) who showed that the intermittency could be calculated from a knowledge of the behavior of randomly formed turbulent spots. The model Is used to calculate the development of the boundary layer on the rotor of a low Reynolds number single-stage turbine. The predictions are compared with experimental results obtained using surface-mounted hot-film anemometers and hot-wire traverses of the rotor midspan boundary layer at two different rotor-stator gaps. The validity and limitations of the model are discussed.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In