0
RESEARCH PAPERS

Unsteady Navier–Stokes Simulation of Transonic Cascade Flow Using an Unfactored Implicit Upwind Relaxation Scheme With Inner Iterations

[+] Author and Article Information
M. Furukawa, T. Nakano, M. Inoue

Department of Mechanical Engineering for Power, Kyushu University, Fukuoka, Japan

J. Turbomach 114(3), 599-606 (Jul 01, 1992) (8 pages) doi:10.1115/1.2929184 History: Received March 04, 1991; Online June 09, 2008

Abstract

An implicit upwind scheme has been developed for Navier–Stokes simulations of unsteady flows in transonic cascades. The two-dimensional, Reynolds-averaged Navier–Stokes equations are discretized in space using a cell-centered finite volume formulation and in time using the Euler implicit method. The inviscid fluxes are evaluated using a highly accurate upwind scheme based on a TVD formulation with the Roe’s approximate Riemann solver, and the viscous fluxes are determined in a central differencing manner. The algebraic turbulence model of Baldwin and Lomax is employed. To simplify grid generations, a zonal approach with a composite zonal grid system is implemented, in which periodic boundaries are treated as zonal boundaries. A new time linearization of the inviscid fluxes evaluated by Roe’s approximate Riemann solver is presented in detail. No approximate factorization is introduced, and unfactored equations are solved by a pointwise relaxation method. To obtain time-accurate solutions, 30 linear iterations are performed at each time step. Numerical examples are presented for unsteady flows in a transonic turbine cascade where periodic unsteadiness is caused by the trailing edge vortex shedding.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In