0
RESEARCH PAPERS

Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part II—Downstream Flow Field and Blade Loading

[+] Author and Article Information
M. I. Yaras, S. A. Sjolander, R. J. Kind

Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6

J. Turbomach 114(3), 660-667 (Jul 01, 1992) (8 pages) doi:10.1115/1.2929190 History: Received February 20, 1991; Online June 09, 2008

Abstract

This paper and its companion paper present experimental results on the effects of simulated rotation on the tip leakage in a linear turbine cascade test. Part II examines the downstream flow field. For clearance sizes of 2.4 and 3.8 percent of the blade chord, measurements were made in two planes downstream of the trailing edge using a seven-hole pressure probe. Significant changes in the tip leakage vortex and passage vortex structures are observed with the introduction of relative motion. The effects of clearance size and rotation on the relationship between bound circulation and tip-vortex circulation are discussed. The validity of a previously developed tip-vortex model for the case of rotation is examined in the light of the measurements. Finally, for clearances of 1.5, 2.4, and 3.8 percent of the blade chord, the effects of rotation on blade loading are studied through static pressure measurements on the blade surfaces. The distortion of the surface pressure field near the tip is found to be reduced with increasing wall speed. This is consistent with the reduced strength of the tip-leakage vortex as wall speed is increased. For all measurements two wall speeds are considered and the results are compared with the case of no rotation.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In