Three-Dimensional Flow and Mixing in an Axial Flow Compressor With Different Rotor Tip Clearances

[+] Author and Article Information
A. Goto

Ebara Research Co., Ltd., 4-2-1 Honfujisawa, Fujisawa-shi, Japan

J. Turbomach 114(3), 675-685 (Jul 01, 1992) (11 pages) doi:10.1115/1.2929192 History: Received February 19, 1991; Online June 09, 2008


The effect of difference in rotor tip clearance on the mean flow fields and unsteadiness and mixing across a stator blade row were investigated using hot-wire anemometry, pressure probes, flow visualization, and the ethylene tracer-gas technique on a single-stage axial flow compressor. The structure of the three-dimensional flow fields was discussed based on results of experiments using the 12-orientation single slanted hotwire technique and spectrum analysis of velocity fluctuation. High-pass filtered measurements of turbulence were also carried out in order to confirm small-scale velocity fluctuation, which is more realistically referred to as turbulence. The span-wise distribution of ethylene gas spreading, estimated by the measured small-scale velocity fluctuation at the rotor exit, agreed quite well with that which was experimentally measured. This fact suggests the significant role of turbulence, generated within the rotor, in the mixing process across the downstream stator. The value of the maximum mixing coefficient in the tip region was found to increase linearly as the tip clearance became enlarged, starting from the value at midspan.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In