0
RESEARCH PAPERS

Comparison of Heat Transfer Measurements With Computations for Turbulent Flow Around a 180 deg Bend

[+] Author and Article Information
D. L. Besserman, S. Tanrikut

Pratt & Whitney, Group Engineering and Technology, East Hartford, CT 06040

J. Turbomach 114(4), 865-871 (Oct 01, 1992) (7 pages) doi:10.1115/1.2928040 History: Received January 18, 1991; Online June 09, 2008

Abstract

Results of detailed heat transfer measurements are presented for all four walls of a 180 deg 1:1 aspect ratio duct. Experiments using a transient heat transfer technique with liquid crystal thermography were conducted for turbulent flow over a Reynolds numbers range of 12,500–50,000. Computational results using a Navier–Stokes code are also presented to complement the experiments. Two near-wall shear-stress treatments (wall functions and the two layer wall integration method) were evaluated in conjunction with k–ε formulation of turbulence to assess their ability to predict high local gradients in heat transfer. Results showed that heat transfer on the convex and concave walls is a manifestation of the complex flow field created by the 180 deg bend. For the flat walls, the streamwise average Nusselt number increases to approximately two times the fully developed turbulent flow value. Ninety degrees into the bend, the importance of the cross-stream gradients is evident with the Nusselt number varying from approximately one to three times the fully developed turbulent flow value. The numerical predictions with two-layer wall integration k–ε turbulence model show very good agreement with the experimental data. These results reinforce the need to predict local heat transfer rates accurately in cooling passages of advanced turbine airfoils to enhance the durability of these components.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In