Blade Row Interaction in a Multistage Low-Pressure Turbine

[+] Author and Article Information
N. Arndt

MTU München, Munich, Federal Republic of Germany

J. Turbomach 115(1), 137-146 (Jan 01, 1993) (10 pages) doi:10.1115/1.2929198 History: Received March 04, 1991; Online June 09, 2008


The objective of this work was to enhance the understanding of unsteady flow phenomena in multistage low-pressure turbines. For this purpose, hot-film probe measurements were made downstream of every rotor blade row of a five-stage low-pressure turbine. Rotor–rotor interaction and stator–rotor interaction were observed to have a profound influence on the flow through the low-pressure turbine. Interaction of rotors of different turbine stages occurred owing to the influence of the wakes shed by one rotor blade row upon the flow through the next downstream rotor blade row. This wake-induced rotor–rotor interaction resulted in strongly amplitude-modulated periodic and turbulent velocity fluctuations downstream of every rotor blade row with the exception of the most upstream one. Significantly different wake depths and turbulence levels measured downstream of every rotor blade row at different circumferential positions evidenced the effect of the circumferentially nonuniform stator exit flow upon the next downstream rotor blade row. Stator-rotor interaction also strongly influenced the overturning and the under-turning of the rotor wakes, caused by the rotor secondary flows, in the rotor endwall regions. Low rotor wake overturning and underturning, i.e., reduced rotor secondary flow influence, were observed to correlate well with low rotor wake turbulence levels.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In