0
RESEARCH PAPERS

Hierarchical Development of Three Direct-Design Methods for Two-Dimensional Axial-Turbomachinery Cascades

[+] Author and Article Information
T. Korakianitis

Department of Mechanical Engineering, Washington University, St. Louis, MO 63130

J. Turbomach 115(2), 314-324 (Apr 01, 1993) (11 pages) doi:10.1115/1.2929237 History: Received October 19, 1991; Online June 09, 2008

Abstract

The direct and inverse blade-design iterations for the selection of isolated airfoils and gas turbine blade cascades are enormously reduced if the initial blade shape has performance characteristics near the desirable ones. This paper presents the hierarchical development of three direct blade-design methods of increasing utility for generating two-dimensional blade shapes. The methods can be used to generate inputs to the direct- or inverse-blade-design sequences for subsonic or supersonic airfoils for compressors and turbines, or isolated airfoils. The examples included for illustration are typical modern turbine cascades, and they have been designed by the direct method exclusively. The first method specifies the airfoil shapes with analytical polynomials. It shows that continuous curvature and continuous slope of curvature are necessary conditions to minimize the possibility of flow separation, and to lead to improved blade designs. The second method specifies the airfoil shapes with parametric fourth-order polynomials, which result in continuous-slope-of-curvature airfoils, with smooth Mach number and pressure distributions. This method is time consuming. The third method specifies the airfoil shapes by using a mixture of analytical polynomials and mapping the airfoil surfaces from a desirable curvature distribution. The third method provides blade surfaces with desirable performance in very few direct-design iterations. In all methods the geometry near the leading edge is specified by a thickness distribution added to a construction line, which eliminates the leading edge overspeed and laminar-separation regions. The blade-design methods presented in this paper can be used to improve the aerodynamic and heat transfer performance of turbomachinery cascades, and they can result in high-performance airfoils in very few iterations.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In