A Fully Three-Dimensional Inverse Method for Turbomachinery Blading in Transonic Flows

[+] Author and Article Information
T. Q. Dang

Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244

J. Turbomach 115(2), 354-361 (Apr 01, 1993) (8 pages) doi:10.1115/1.2929241 History: Received February 20, 1992; Online June 09, 2008


This paper presents a procedure to extend a recently developed fully three-dimensional inverse method for highly loaded turbomachine blades into the transonic-flow regime. In this inverse method, the required three-dimensional blade profile to produce a prescribed swirl schedule is determined iteratively using the blade boundary conditions. In the present implementation, the flow is assumed to be inviscid and the blades are assumed to be infinitely thin. The relevant equations are solved in the conservative forms and are discretized in all three directions using a finite-volume technique. Calculations are carried out for the design of high-pressure axial- and centrifugal-compressor rotors. These examples include prescribed swirl schedules corresponding to blade designs that are shock-free and blade designs that have rapid compression regions in the blade passage.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In