An Investigation of Factors Influencing the Calibration of Five-Hole Probes for Three-Dimensional Flow Measurements

[+] Author and Article Information
R. G. Dominy

School of Engineering and Computer Science, University of Durham, Durham, United Kingdom

H. P. Hodson

Whittle Laboratory, Cambridge University, Cambridge, United Kingdom

J. Turbomach 115(3), 513-519 (Jul 01, 1993) (7 pages) doi:10.1115/1.2929281 History: Received February 20, 1992; Online June 09, 2008


The effects of Reynolds number, Mach number, and turbulence on the calibrations of commonly used types of five-hole probe are discussed. The majority of the probes were calibrated at the exit from a transonic nozzle over a range of Reynolds numbers (7 × 103 < Re < 80 × 103 based on probe tip diameter) at subsonic and transonic Mach numbers. Additional information relating to the flow structure were obtained from a large-scale, low-speed wind tunnel. The results confirmed the existence of two distinct Reynolds number effects. Flow separation around the probe head affects the calibrations at relatively low Reynolds numbers while changes in the detailed structure of the flow around the sensing holes affects the calibrations even when the probe is nulled. Compressibility is shown to have little influence upon the general behavior of these probes in terms of Reynolds number sensitivity but turbulence can affect the reliability of probe calibrations at typical test Reynolds numbers.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In