0
RESEARCH PAPERS

An Experimental Study Heat Transfer in a Large-Scale Turbine Rotor Passage

[+] Author and Article Information
M. F. Blair

Heat Transfer Technology, United Technologies Research Center, East Hartford, CT 06108

J. Turbomach 116(1), 1-13 (Jan 01, 1994) (13 pages) doi:10.1115/1.2928273 History: Received February 17, 1992; Online June 09, 2008

Abstract

An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil and for the hub endwall surface. The objective of this program was to document the effects of flow three dimensionality on the heat transfer in a rotating blade row (versus a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage, and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading edge horseshoe vortex system.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In