Measurements of the Flow Field Within a Compressor Outlet Guide Vane Passage

[+] Author and Article Information
J. F. Carrotte, K. F. Young, S. J. Stevens

Department of Transport Technology, Loughborough University, Loughborough, Leicestershire, United Kingdom

J. Turbomach 117(1), 29-37 (Jan 01, 1995) (9 pages) doi:10.1115/1.2835641 History: Received February 12, 1993; Online January 29, 2008


A series of tests have been carried out to investigate the flow in a Compressor Outlet Guide Vane (OGV) blade row downstream of a single-stage rotor. The subsequent flow field that developed within an OGV passage was measured, at intervals of 10 percent axial chord, using a novel design of miniature five-hole pressure probe. In addition to indicating overall pressure levels and the growth of regions containing low-energy fluid, secondary flow features were identified from calculated axial vorticity contours and flow vectors. Close to each casing the development of classical secondary flow was observed, but toward the center of the annulus large well-defined regions of opposite rotation were measured. These latter flows were due to the streamwise vorticity at inlet to the blade row associated with the skewed inlet profile. Surface static pressures were also measured and used to obtain the blade pressure force at three spanwise locations. These values were compared with the local changes in flow momentum calculated from the measured velocity distributions. With the exception of the flow close to the outer casing, which is affected by rotor tip leakage, good agreement was found between these quantities indicating relatively weak radial mixing.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In