Osborne Reynolds: Energy Methods in Transition and Loss Production: A Centennial Perspective

[+] Author and Article Information
J. Moore, J. G. Moore

Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

J. Turbomach 117(1), 142-153 (Jan 01, 1995) (12 pages) doi:10.1115/1.2835632 History: Received February 25, 1994; Online January 29, 2008


Osborne Reynolds’ developments of the concepts of Reynolds averaging, turbulence stresses, and equations for mean kinetic energy and turbulence energy are viewed in the light of 100 years of subsequent flow research. Attempts to use the Reynolds energy-balance method to calculate the lower critical Reynolds number for pipe and channel flows are reviewed. The modern use of turbulence-energy methods for boundary layer transition modeling is discussed, and a current European Working Group effort to evaluate and develop such methods is described. The possibility of applying these methods to calculate transition in pipe, channel, and sink flows is demonstrated using a one-equation, q-L, turbulence model. Recent work using the equation for the kinetic energy of mean motion to gain understanding of loss production mechanisms in three-dimensional turbulent flows is also discussed.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In