Effect of Permeable Ribs on Heat Transfer and Friction in a Rectangular Channel

[+] Author and Article Information
Jenn-Jiang Hwang

Department of Mechanical Engineering, Chung-Hua Polytechnic Institute, Hsinchu, Taiwan

Tong-Miin Liou

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan

J. Turbomach 117(2), 265-271 (Apr 01, 1995) (7 pages) doi:10.1115/1.2835655 History: Received March 10, 1993; Online January 29, 2008


Heat transfer and friction characteristics in a rectangular channel with perforated ribs arranged in-line on two opposite walls are investigated experimentally. Five perforated rib open-area ratios (0, 10, 22, 38, and 44 percent) and three rib pitch-to-height ratios (10, 15, and 20) are examined. The Reynolds number ranges from 5000 to 50,000. The rib height-to-channel hydraulic diameter ratio and the channel aspect ratio are 0.081 and 4, respectively. Laser holographic interferometry is employed not only to measure the heat transfer coefficients of the ribbed wall but also to determine the rib apparent permeability. It is found that ribs with appropriately high open-area ratio and high Reynolds number are permeable, and the critical Reynolds number for evidence of flow permeability decreases with increasing rib open-area ratio. Results of local heat transfer coefficients further show that the permeable ribs have an advantage of obviating hot spots. Moreover, the duct with permeable ribs gives a higher thermal performance than that with solid ribs.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In