Numerical Simulation of Tip Clearance Effects in Turbomachinery

[+] Author and Article Information
A. Basson, B. Lakshminarayana

Dept. of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802

J. Turbomach 117(3), 348-359 (Jul 01, 1995) (12 pages) doi:10.1115/1.2835668 History: Received March 17, 1993; Online January 29, 2008


The numerical formulation developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbo-machinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The value of this artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities as leakage mass flow, vortex strength, losses, dominant leakage flow regions, and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In