Euler Solutions for Transonic Oscillating Cascade Flows Using Dynamic Triangular Meshes

[+] Author and Article Information
C. J. Hwang, S. Y. Yang

Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan

J. Turbomach 117(3), 393-400 (Jul 01, 1995) (8 pages) doi:10.1115/1.2835674 History: Received February 19, 1993; Online January 29, 2008


The modified total-variation-diminishing scheme and an improved dynamic triangular mesh algorithm are presented to investigate the transonic oscillating cascade flows. In a Cartesian coordinate system, the unsteady Euler equations are solved. To validate the accuracy of the present approach, transonic flow around a single NACA 0012 airfoil pitching harmonically about the quarter chord is computed first. The calculated instantaneous pressure coefficient distribution during a cycle of motion compare well with the related numerical and experimental data. To evaluate further the present approach involving nonzero interblade phase angle, the calculations of transonic flow around an oscillating cascade of two unstaggered NACA 0006 blades with interblade phase angle equal to 180 deg are performed. From the instantaneous pressure coefficient distributions and time history of lift coefficient, the present approach, where a simple spatial treatment is utilized on the periodic boundaries, gives satisfactory results. By using this solution procedure, transonic flows around an oscillating cascade of four biconvex blades with different oscillation amplitudes, reduced frequencies, and interblade phase angles are investigated. From the distributions of magnitude and phase angle of the dynamic pressure difference coefficient, the present numerical results show better agreement with the experimental data than those from the linearized theory in most of the cases. For every quarter of one cycle, the pressure contours repeat and proceed one pitch distance in the upward or downward direction for interblade phase angle equal to −90 deg or 90 deg, respectively. The unsteady pressure wave and shock behaviors are observed. From the lift coefficient distributions, it is further confirmed that the oscillation amplitude, interblade phase angle, and reduced frequency all have significant effects on the transonic oscillating cascade flows.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In