0
RESEARCH PAPERS

Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part II—On the Exposed Surface

[+] Author and Article Information
H. H. Cho

Department of Mechanical Engineering, Yonsei University, Seoul, Korea 120-749

R. J. Goldstein

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

J. Turbomach 117(3), 451-460 (Jul 01, 1995) (10 pages) doi:10.1115/1.2835681 History: Received June 01, 1994; Online January 29, 2008

Abstract

The heat (mass) transfer coefficient and the film cooling effectiveness are obtained from separate tests using pure air and naphthalene-saturated vapor injected through circular holes into a crossflow of air. The experiments indicate that Sherwood numbers around the injection hole are up to four times those on a flat plate (without injection holes) due to the interaction of the jets and the mainstream. The mass transfer around the injection holes is dominated by formations of horseshoe, side, and kidney vortices, which are generated by the jet and crossflow interaction. For an in-line array of holes, the effectiveness is high and uniform in the streamwise direction but has a large variation in the lateral direction. The key parameters, including transfer coefficients on the back surface (Part I), inside the hole (Part I), and on the exposed surfaces, and the effectiveness on the exposed surface, are obtained so that the wall temperature distribution near the injection holes can be determined for a given heat flux condition. This detailed information will also aid the numerical modeling of flow and mass/heat transfer around film cooling holes.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In