0
RESEARCH PAPERS

Computation and Simulation of Wake-Generated Unsteady Pressure and Boundary Layers in Cascades: Part 1—Description of the Approach and Validation

[+] Author and Article Information
S. Fan, B. Lakshminarayana

Center for Gas Turbines and Power, Pennsylvania State University, University Park, PA 16802

J. Turbomach 118(1), 96-108 (Jan 01, 1996) (13 pages) doi:10.1115/1.2836612 History: Received February 09, 1994; Online January 29, 2008

Abstract

The unsteady pressure and boundary layers on a turbomachinery blade row arising from periodic wakes due to upstream blade rows are investigated in this paper. A time-accurate Euler solver has been developed using an explicit four-stage Runge–Kutta scheme. Two-dimensional unsteady nonreflecting boundary conditions are used at the inlet and the outlet of the computational domain. The unsteady Euler solver captures the wake propagation and the resulting unsteady pressure field, which is then used as the input for a two-dimensional unsteady boundary layer procedure to predict the unsteady response of blade boundary layers. The boundary layer code includes an advanced k–ε model developed for unsteady turbulent boundary layers. The present computational procedure has been validated against analytic solutions and experimental measurements. The validation cases include unsteady inviscid flows in a flat-plate cascade and a compressor exit guide vane (EGV) cascade, unsteady turbulent boundary layer on a flat plate subject to a traveling wave, unsteady transitional boundary layer due to wake passing, and unsteady flow at the midspan section of an axial compressor stator. The present numerical procedure is both efficient and accurate in predicting the unsteady flow physics resulting from wake/blade-row interaction, including wake-induced unsteady transition of blade boundary layers.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In