0
RESEARCH PAPERS

Inverse Design of Centrifugal Compressor Vaned Diffusers in Inlet Shear Flows

[+] Author and Article Information
M. Zangeneh

Department of Mechanical Engineering, University College London, London, United Kingdom

J. Turbomach 118(2), 385-393 (Apr 01, 1996) (9 pages) doi:10.1115/1.2836653 History: Received February 15, 1994; Online January 29, 2008

Abstract

A three-dimensional inverse design method in which the blade (or vane) geometry is designed for specified distributions of circulation and blade thickness is applied to the design of centrifugal compressor vaned diffusers. Two generic diffusers are designed, one with uniform inlet flow (equivalent to a conventional design) and the other with a sheared inlet flow. The inlet shear flow effects are modeled in the design method by using the so-called “Secondary Flow Approximation” in which the Bernoulli surfaces are convected by the tangentially mean inviscid flow field. The difference between the vane geometry of the uniform inlet flow and nonuniform inlet flow diffusers is found to be most significant from 50 percent chord to the trailing edge region. The flows through both diffusers are computed by using Denton’s three-dimensional inviscid Euler solver and Dawes’ three-dimensional Navier–Stokes solver under sheared in-flow conditions. The predictions indicate improved pressure recovery and internal flow field for the diffuser designed for shear inlet flow conditions.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In