0
RESEARCH PAPERS

Studies on Wake-Affected Heat Transfer Around the Circular Leading Edge of Blunt Body

[+] Author and Article Information
K. Funazaki

Department of Mechanical Engineering, Iwate University, Morioka, Iwate, Japan

J. Turbomach 118(3), 452-460 (Jul 01, 1996) (9 pages) doi:10.1115/1.2836688 History: Received February 04, 1996; Online January 29, 2008

Abstract

Detailed measurements are performed about time-averaged heat transfer distributions around the leading edge of a blunt body, which is affected by incoming periodic wakes from the upstream moving bars. The blunt body is a test model of a front portion of a turbine blade in gas turbines and consists of a semicircular cylindrical leading edge and a flat plate afterbody. A wide range of the steady and unsteady flow conditions are adopted as for the Reynolds number based on the diameter of the leading edge and the bar-passing Strouhal number. The measured heat transfer distributions indicate that the wakes passing over the leading edge cause a significant increase in heat transfer before the separation and the higher Strouhal number results in higher heat transfer. From this experiment, a correlation for the heat transfer enhancement around the leading edge due to the periodic wakes is deduced as a function of the Stanton number and it is reviewed by comparison with the other experimental works.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In