0
RESEARCH PAPERS

Unsteady Numerical Simulations of Radial Temperature Profile Redistribution in a Single-Stage Turbine

[+] Author and Article Information
D. J. Dorney

Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI 49008

J. R. Schwab

Turbomachinery Flow Physics Branch, NASA Lewis Research Center, Cleveland, OH 44135

J. Turbomach 118(4), 783-791 (Oct 01, 1996) (9 pages) doi:10.1115/1.2840934 History: Received February 13, 1995; Online January 29, 2008

Abstract

Experimental data taken from gas turbine combustors indicate that the flow exiting the combustor can contain both circumferential and radial temperature gradients. A significant amount of research recently has been devoted to studying turbine flows with inlet temperature gradients, but no total pressure gradients. Less attention has been given to flows containing both temperature and total pressure gradients at the inlet. The significance of the total pressure gradients is that the secondary flows and the temperature redistribution process in the vane blade row can be significantly altered. Experimental data previously obtained in a single-stage turbine with inlet total temperature and total pressure gradients indicated a redistribution of the warmer fluid to the pressure surface of the airfoils, and a severe underturning of the flow at the exit of the stage. In a concurrent numerical simulation, a steady, inviscid, three-dimensional flow angle distribution, In the current research program, a series of unsteady two-and three-dimensional Navier–Stokes simulations have been performed to study the redistribution of the radial temperature profile in the turbine stage. The three-dimensional analysis predicts both the temperature redistribution and the flow underturning observed in the experiments.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In