0
RESEARCH PAPERS

A Navier–Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping

[+] Author and Article Information
R. S. Abhari

The Ohio State University, Columbus, OH 43210

M. Giles

Oxford University, Oxford, United Kingdom

J. Turbomach 119(1), 77-84 (Jan 01, 1997) (8 pages) doi:10.1115/1.2841013 History: Received February 13, 1995; Online January 29, 2008

Abstract

An unsteady, compressible, two-dimensional, thin shear layer Navier–Stokes solver is modified to predict the motion-dependent unsteady flow around oscillating airfoils in a cascade. A quasi-three-dimensional formulations is used to account for the stream-wise variation of streamtube height. The code uses Ni’s Lax–Wendroff algorithm in the outer region, an implicit ADI method in the inner region, conservative coupling at the interface, and the Baldwin–Lomax turbulence model. The computational mesh consists of an O-grid around each blade plus an unstructured outer grid of quadrilateral or triangular cells. The unstructured computational grid was adapted to the flow to better resolve shocks and wakes. Motion of each airfoil was simulated at each time step by stretching and compressing the mesh within the O-grid. This imposed motion consists of harmonic solid body translation in two directions and rotation, combined with the correct interblade phase angles. The validity of the code is illustrated by comparing its predictions to a number of test cases, including an axially oscillating flat plate in laminar flow, the Aeroelasticity of Turbomachines Symposium Fourth Standard Configuration (a transonic turbine cascade), and the Seventh Standard Configuration (a transonic compressor cascade). The overall comparison between the predictions and the test data is reasonably good. A numerical study on a generic transonic compressor rotor was performed in which the impact of varying the amplitude of the airfoil oscillation on the normalized predicted magnitude and phase of the unsteady pressure around the airfoil was studied. It was observed that for this transonic compressor, the nondimensional aerodynamic damping was influenced by the amplitude of the oscillation.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In