Unsteady Flow Field Due to Nozzle Wake Interaction With the Rotor in an Axial Flow Turbine: Part I—Rotor Passage Flow Field

[+] Author and Article Information
M. A. Zaccaria, B. Lakshminarayana

Center for Gas Turbines and Power, The Pennsylvania State University, University Park, PA 16802

J. Turbomach 119(2), 201-213 (Apr 01, 1997) (13 pages) doi:10.1115/1.2841103 History: Received March 15, 1995; Online January 29, 2008


The flow field in turbine rotor passages is complex with unsteadiness caused by the aerodynamic interaction of the nozzle and rotor flow fields. The two-dimensional steady and unsteady flow field at midspan in an axial flow turbine rotor has been investigated experimentally using an LDV with emphasis on the interaction of the nozzle wake with the rotor flow field. The flow field in the rotor passage is presented in Part I. while the flow field downstream of the rotor is presented in Part II. Measurements were acquired at 37 axial locations from just upstream of the rotor to one chord downstream of the rotor. The time-averaged flow field and the unsteadiness caused by the wake have been captured. As the nozzle wake travels through the rotor flow field, the nozzle wake becomes distorted with the region of the nozzle wake near the rotor suction surface moving faster than the region near the rotor pressure surface, resulting in a highly distorted wake. The wake is found to be spread out along the rotor pressure surface, as it convects downstream of midchord. The magnitude of the nozzle wake velocity defect grows until close to midchord, after which it decreases. High values of unresolved unsteadiness were observed at the rotor leading edge. This is due to the large flow gradients near the leading edge and the interaction of the nozzle wake with the rotor leading edge. High values of unresolved unsteadiness were also observed near the rotor pressure surface. This increase in unresolved unsteadiness is caused by the interaction of the nozzle wake with the flow near the rotor pressure surface.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In