0
RESEARCH PAPERS

Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection

[+] Author and Article Information
A. Kohli, D. G. Bogard

Mechanical Engineering Department, University of Texas at Austin, Austin, TX 78712

J. Turbomach 119(2), 352-358 (Apr 01, 1997) (7 pages) doi:10.1115/1.2841118 History: Received February 05, 1995; Online January 29, 2008

Abstract

The film cooling performance and velocity field were investigated for discrete round holes inclined at an injection angle of 55 deg. Results are compared to typical round film cooling holes, with an injection angle of 35 deg. All experiments in this study were performed at a density ratio of DR = 1.6, using cryogenic cooling of the injected air. Centerline and lateral distributions of effectiveness were obtained for a range of momentum flux ratios. Thermal field and two component mean velocity and turbulence intensity measurements were made at a momentum flux ratio that was within the range of maximum spatially averaged effectiveness. Compared to round holes with 35 deg injection angle, the 55 deg holes showed only a slight degradation in centerline effectiveness for low momentum flux ratios, while a significant reduction in effectiveness was seen at high momentum flux ratios. The thermal field for the 55 deg round holes indicated a faster decay of cooling capacity for the 55 deg round holes. The high turbulence levels for the 55 deg round hole coincided with the sharp velocity gradients between the jet and free stream, and the decay of turbulence levels with downstream distance was found to be similar to those for a 35 deg hole.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In