0
RESEARCH PAPERS

Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method

[+] Author and Article Information
S. V. Ekkad, D. Zapata, J. C. Han

Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

J. Turbomach 119(3), 587-593 (Jul 01, 1997) (7 pages) doi:10.1115/1.2841162 History: Received February 14, 1995; Online January 29, 2008

Abstract

This paper presents detailed film effectiveness distributions over a flat surface with one row of injection holes inclined streamwise at 35 deg for three blowing ratios (M = 0.5, 1.0, 2.0). Three compound angles of 0, 45, and 90 deg with air (D.R. = 0.98) and CO2 (D. R. = 1.46) as coolants are tested at an elevated free-stream turbulence condition (Tu ≈ 8.5 percent). A transient liquid crystal technique is used to measure local heat transfer coefficients and film effectiveness. Detailed film effectiveness results are presented near and around film injection holes. Compound angle injection provides higher film effectiveness than simple angle injection for both coolants. Higher density injectant produces higher effectiveness for simple injection. However, lower density coolant produces higher effectiveness for a large compound angle of 90 deg. The detailed film effectiveness obtained using the transient liquid crystal technique, particularly in the near-hole region, provided a better understanding of the film cooling process in gas turbine components.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In