Laser Velocimeter Measurements in the Turbine of an Automotive Torque Converter: Part I—Average Measurements

[+] Author and Article Information
K. Brun, R. D. Flack

Mechanical, Aerospace, and Nuclear Engineering Department, University of Virginia, Charlottesville, VA 22903

J. Turbomach 119(3), 646-654 (Jul 01, 1997) (9 pages) doi:10.1115/1.2841170 History: Received March 10, 1995; Online January 29, 2008


The three-dimensional average velocity field in an automotive torque converter turbine was examined. Two significantly different operating conditions of the torque converter were tested: the 0.065 and 0.800 turbine/pump speed ratio. Velocities were measured using a one-directional, frequency-shifted laser velocimeter. The instantaneous angular positions of the torque converter turbine and pump were recorded using digital shaft encoders. Shaft encoder information and velocities were correlated to generate average velocity blade-to-blade profiles and velocity vector plots. Measurements were taken in the inlet, quarter, mid, and exit planes of the turbine. From the experimental velocity measurements, mass flows, turbine output torque, average vorticities, viscous dissipation, inlet incidence flow angles, and exit flow angles were calculated. Average mass flows were 23.4 kg/s and 14.7 kg/s for the 0.065 and 0.800 speed ratios, respectively. Velocity vector plots for both turbine/pump speed ratios showed the flow field in the turbine quarter and midplanes to be highly nonuniform with separation regions and reversed flows at the core-suction corner. For the conditions tested, the turbine inlet flow was seen to have a high relative incidence angle, while the relative turbine exit flow angle was close to the blade angle.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In