0
RESEARCH PAPERS

Three-Dimensional Inverse Method for Turbomachinery Blading Design

[+] Author and Article Information
A. Demeulenaere, R. Van den Braembussche

von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium

J. Turbomach 120(2), 247-255 (Apr 01, 1998) (9 pages) doi:10.1115/1.2841399 History: Received February 01, 1996; Online January 29, 2008

Abstract

An iterative procedure for three-dimensional blade design is presented, in which the three-dimensional blade shape is modified using a physical algorithm, based on the transpiration model. The transpiration flux is computed by means of a modified Euler solver, in which the target pressure distribution is imposed along the blade surfaces. Only a small number of modifications is needed to obtain the final geometry. The method is based on a high-resolution three-dimensional Euler solver. An upwind biased evaluation of the advective fluxes allows for a very low numerical entropy generation, and sharp shock capturing. Non-reflecting boundary conditions are applied along the inlet/outlet boundaries. The capabilities of the method are illustrated by redesigning a transonic compressor rotor blade, to achieve, for the same mass flow and outlet flow angle, a shock-free deceleration along the suction side. The second example concerns the design of a low aspect ratio turbine blade, with a positive compound lean to reduce the intensity of the passage vortices. The final blade is designed for an optimized pressure distribution, taking into account the forces resulting from the blade lean angle.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In