1997 Best Paper Award—Controls and Diagnostics Committee: Active Stabilization of Rotating Stall and Surge in a Transonic Single-Stage Axial Compressor

[+] Author and Article Information
H. J. Weigl, J. D. Paduano, L. G. Fréchette, A. H. Epstein, E. M. Greitzer

Gas Turbine Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139

M. M. Bright, A. J. Strazisar

NASA Lewis Research Center, Cleveland, OH 44135

J. Turbomach 120(4), 625-636 (Oct 01, 1998) (12 pages) doi:10.1115/1.2841772 History: Received February 01, 1997; Online January 29, 2008


Rotating stall and surge have been stabilized in a transonic single-stage axial compressor using active feedback control. The control strategy is to sense upstream wall static pressure patterns and feed back the signal to an annular array of twelve separately modulated air injectors. At tip relative Mach numbers of 1.0 and 1.5 the control achieved 11 and 3.5 percent reductions in stalling mass flow, respectively, with injection adding 3.6 percent of the design compressor mass flow. The aerodynamic effects of the injection have also been examined. At a tip Mach number, Mtip , of 1.0, the stall inception dynamics and effective active control strategies are similar to results for low-speed axial compressors. The range extension was achieved by individually damping the first and second spatial harmonics of the prestall perturbations using constant gain feedback. At a Mtip of 1.5 (design rotor speed), the prestall dynamics are different than at the lower speed. Both one-dimensional (surge) and two-dimensional (rotating stall) perturbations needed to be stabilized to increase the compressor operating range. At design speed, the instability was initiated by approximately ten rotor revolutions of rotating stall followed by classic surge cycles. In accord with the results from a compressible stall inception analysis, the zeroth, first, and second spatial harmonics each include more than one lightly damped mode, which can grow into the large amplitude instability. Forced response testing identified several modes traveling up to 150 percent of rotor speed for the first three spatial harmonics; simple constant gain control cannot damp all of these modes and thus cannot stabilize the compressor at this speed. A dynamic, model-based robust controller was therefore used to stabilize the multiple modes that comprise the first three harmonic perturbations in this transonic region of operation.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In