Reduction of Unsteady Blade Loading by Beneficial Use of Vortical and Potential Disturbances in an Axial Compressor With Rotor Clocking

[+] Author and Article Information
S. T. Hsu, A. M. Wo

Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan

J. Turbomach 120(4), 705-713 (Oct 01, 1998) (9 pages) doi:10.1115/1.2841781 History: Received February 01, 1997; Online January 29, 2008


This paper demonstrates reduction of stator unsteady loading due to forced response in a large-scale, low-speed, rotor/stator/rotor axial compressor rig by clocking the downstream rotor. Data from the rotor/stator configuration showed that the stator response due to the upstream vortical disturbance reaches a maximum when the wake impinges against the suction surface immediately downstream of the leading edge. Results from the stator/rotor configuration revealed that the stator response due to the downstream potential disturbance reaches a minimum with a slight time delay after the rotor sweeps pass the stator trailing edge. For the rotor/stator/rotor configuration, with Gap1 = 10 percent chord and Gap2 = 30 percent chord, results showed a 60 percent reduction in the stator force amplitude by clocking the downstream rotor so that the time occurrence of the maximum force due to the upstream vortical disturbance coincides with that of the minimum force due to the downstream potential disturbance. This is the first time, the authors believe, that beneficial use of flow unsteadiness is definitively demonstrated to reduce the blade unsteady loading.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In