0
RESEARCH PAPERS

On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers

[+] Author and Article Information
M. Zangeneh

Department of Mechanical Engineering, University College London, London, United Kingdom

A. Goto, H. Harada

Ebara Research Co., Ltd., Fujisawa-shi, Japan

J. Turbomach 120(4), 723-735 (Oct 01, 1998) (13 pages) doi:10.1115/1.2841783 History: Received February 01, 1997; Online January 29, 2008

Abstract

In this paper, for the first time, a set of guidelines is presented for the systematic design of mixed flow and centrifugal compressors and pumps with suppressed secondary flows and a uniform exit flow field. The paper describes the shape of the optimum pressure distribution for the suppression of secondary flows in the impeller with reference to classical secondary flow theory. The feasibility of achieving this pressure distribution is then demonstrated by deriving guidelines for the design specifications of a three-dimensional inverse design method, in which the blades are designed subject to a specified circulation distribution or 2πrV θ . The guidelines will define the optimum choice of the blade loading or ∂rV θ /∂m and the stacking condition for the blades. These guidelines are then used in the design of three different low specific speed centrifugal pump impellers and a high specific speed industrial centrifugal compressor impellers. The flows through all the designed impellers are computed numerically by a three-dimensional viscous code and the resulting flow field is compared to that obtained in the corresponding conventional impeller. The results show consistent suppression of secondary flows in all cases. The design guidelines are validated experimentally by comparing the performance of the inverse designed centrifugal compressor impeller with the corresponding conventional impeller. The overall performance of the stage with the inverse designed impeller with suppressed secondary flows was found to be 5 percent higher than the conventional impeller at the peak efficiency point. Exit flow traverse results at the impeller exit indicate a more uniform exit flow than that measured at the exit from the conventional impeller.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In