Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade

[+] Author and Article Information
H. Du, J. C. Han, S. V. Ekkad

Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

J. Turbomach 120(4), 808-817 (Oct 01, 1998) (10 pages) doi:10.1115/1.2841793 History: Received February 01, 1997; Online January 29, 2008


Unsteady wake effects on detailed heat transfer coefficient and film cooling effectiveness distributions from a gas turbine blade with film cooling are obtained using a transient liquid crystal technique. Tests were performed on a five-blade linear cascade at a axial chord Reynolds number of 5.3 × 105 at cascade exit. Upstream unsteady wakes are simulated using a spoke-wheel type wake generator. The test blade has three rows of film holes on the leading edge and two rows each on the pressure and suction surfaces. Air and CO2 were used as coolants to simulate different coolant-to-mainstream density ratio effect. Coolant blowing ratio for air injection is varied from 0.8 to 1.2 and is varied from 0.4 to 1.2 for CO2 . Results show that Nusselt numbers for a film-cooled blade are much higher compared to a blade without film injection. Particularly, film injection causes earlier boundary layer transition on the suction surface. Unsteady wakes slightly enhance Nusselt numbers but significantly reduce film cooling effectiveness on a film-cooled blade compared with a film-cooled blade without wakes. Nusselt numbers increase slightly but film cooling effectiveness increase significantly with an increase in blowing ratio for CO2 injection. Higher density coolant (CO2 ) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher effectiveness at lower blowing ratios (M = 0.8).

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In