0
RESEARCH PAPERS

The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli

[+] Author and Article Information
D. Bohn, J. Gier

Institute of Steam and Gas Turbines, Aachen University of Technology, Aachen, Germany

J. Turbomach 120(4), 824-830 (Oct 01, 1998) (7 pages) doi:10.1115/1.2841795 History: Received February 01, 1997; Online January 29, 2008

Abstract

Higher turbine inlet temperatures are a common measure for increasing the thermal efficiency of modern gas turbines. This development leads not only to the need for more efficient turbine blade cooling but also to the requirement for a more profound knowledge of the mechanically and thermally stressed parts of the rotor. For determining thermal stresses from the temperature distribution in the rotor of a gas turbine, one has to encounter the convective transfer in rotor cavities. In the special case of an entirely closed gas-filled rotating annulus, the convective flow is governed by a strong natural convection. Owen and other researchers have found that the presence of turbulence and its inclusion in the modeling of the flow causes significant differences in the flow development in rotating annuli with throughflow, e.g., different vortex structures. However, in closed rotating annuli there is still a lack of knowledge concerning the influence of turbulence. Based on previous work, in this paper the influence of turbulence on the flow structure and on the heat transfer is investigated. The flow is investigated numerically with a three-dimensional Navier–Stokes solver, based on a pressure correction scheme. To account for the turbulence, a low-Reynolds-number k–ε model is employed. The results are compared with experiments performed at the Institute of Steam and Gas Turbines. The computations demonstrate that turbulence has a considerable influence on the overall heat transfer as well as on the local heat transfer distribution. Three-dimensional effects are discussed by comparing the three-dimensional calculation with a two-dimensional calculation of the same configuration and are found to have some impact.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In