0
RESEARCH PAPERS

A Shock Loss Model for Supersonic Compressor Cascades

[+] Author and Article Information
G. S. Bloch, W. W. Copenhaver

Aero Propulsion and Power Directorate, Wright Laboratory, Wright-Patterson AFB, OH 45433

W. F. O’Brien

Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

J. Turbomach 121(1), 28-35 (Jan 01, 1999) (8 pages) doi:10.1115/1.2841231 History: Received February 01, 1997; Online January 29, 2008

Abstract

Loss models used in compression system performance prediction codes are often developed from the study of two-dimensional cascades. In this paper, compressible fluid mechanics has been applied to the changes in shock geometry that are known to occur with back pressure for unstarted operation of supersonic compressor cascades. This physics-based engineering shock loss model is applicable to cascades with arbitrary airfoil shapes. Predictions from the present method have been compared to measurements and Navier–Stokes analyses of the LO30-4 and L030-6 cascades, and very good agreement was demonstrated for unstarted operation. A clear improvement has been demonstrated over previously published shock loss models for unstarted operation, both in the accuracy of the predictions and in the range of applicability. The dramatic increase in overall loss with increasing inlet flow angle is shown to be primarily the result of increased shock loss, and much of this increase is caused by the detached bow shock. For a given Mach number, the viscous profile loss is nearly constant over the entire unstarted operating range of the cascade, unless a shock-induced boundary layer separation occurs near stall. Shock loss is much more sensitive to inlet Mach number than is viscous profile loss.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In